Snippets

compiled by Bryan Hubbard

Asteroid nudged by sunlight: Most precise measurement of Yarkovsky effect
Published: Thursday, May 24, 2012 – 22:31 in Astronomy & Space

Scientists on NASA’s asteroid sample return mission, Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx), have measured the orbit of their destination asteroid, 1999 RQ36, with such accuracy they were able to directly measure the drift resulting from a subtle but important force called the Yarkovsky effect — the slight push created when the asteroid absorbs sunlight and re-emits that energy as heat. “The new orbit for the half-kilometer (one-third mile) diameter 1999 RQ36 is the most precise asteroid orbit ever obtained,” said OSIRIS-REx team member Steven Chesley of the NASA Jet Propulsion Laboratory, Pasadena, Calif. He presented the findings May 19 at the Asteroids, Comets and Meteors 2012 meeting in Niigata, Japan.

The complete article may be found at: Most precise measurement of Yarkovsky effect

Herschel Space Observatory study reveals galaxy-packed filament
Published: Thursday, May 17, 2012 – 14:33 in Astronomy & Space

A McGill led research team using the Herschel Space Observatory has discovered a giant, galaxy-packed filament ablaze with billions of new stars. The filament connects two clusters of galaxies that, along with a third cluster, will smash together and give rise to one of the largest galaxy superclusters in the universe. The filament is the first structure of its kind spied in a critical era of cosmic buildup when colossal collections of galaxies called superclusters began to take shape. The glowing galactic bridge offers astronomers a unique opportunity to explore how galaxies evolve and merge to form superclusters.

For the full story go to – Galaxy-packed Filament

New IBEX data show heliosphere’s long-theorized bow shock does not exist
Published: Thursday, May 10, 2012 – 22:31 in Astronomy & Space

New results from NASA’s Interstellar Boundary Explorer (IBEX) reveal that the bow shock, widely accepted by researchers to precede the heliosphere as it plows through tenuous gas and dust from the galaxy does not exist. According to a paper published in the journal Science online, the latest refinements in relative speed and local interstellar magnetic field strength prevent the heliosphere, the magnetic “bubble” that cocoons Earth and the other planets, from developing a bow shock. The bow shock would consist of ionized gas or plasma that abruptly and discontinuously changes in density in the region of space that lies straight ahead of the heliosphere.

The complete article may be found at: Heliosphere’s bow shock does not exist

NASA’s Chandra sees remarkable outburst from old black hole
Published: Monday, April 30, 2012 – 15:35 in Astronomy & Space

An extraordinary outburst produced by a black hole in a nearby galaxy has provided direct evidence for a population of old, volatile stellar black holes. The discovery, made by astronomers using NASA’s Chandra X-ray Observatory, provides new insight into the nature of a mysterious class of black holes that can produce as much energy in X-rays as a million suns radiate at all wavelengths. Researchers used Chandra to discover a new ultraluminous X-ray source, or ULX. These objects give off more X-rays than most binary systems, in which a companion star orbits the remains of a collapsed star. These collapsed stars form either a dense core called a neutron star or a black hole. The extra X-ray emission suggests ULXs contain black holes that might be much more massive than the ones found elsewhere in our galaxy.

For the full story go to – Outburst from old black hole

Advertisements
This entry was posted in June 2012, Sidereal Times and tagged , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s